If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+11x-10=0
a = 1; b = 11; c = -10;
Δ = b2-4ac
Δ = 112-4·1·(-10)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{161}}{2*1}=\frac{-11-\sqrt{161}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{161}}{2*1}=\frac{-11+\sqrt{161}}{2} $
| 9-5*x=-30 | | 3(2x-1)(-2(3x+4)=11x | | 4/7+7m/3=68/28 | | 1x^2–12x–38=0 | | -18+3x=2(4x-4) | | (2a-3)(3a-+4)=0 | | a=a(-7) | | 5x+16=2x+19 | | –6g=–7g+3 | | 3x+5-8=2x+7 | | 90+3x+x=180 | | 465=n2-n | | 1/10/x=1/2/15 | | 10(25-x)=-25x+4.75 | | -q=-10 | | 3x-(32-5x)=8 | | 2x=1.5x+20000 | | 2x=1.5x+200 | | 2x-9/x+1=1 | | (3x-7)/4=28 | | (560/x)-(560/x-10)-1=0 | | 560/x-(560/x-10)-1=0 | | -3x-(8/9)=5/6 | | 560/x-560/x-10-1=0 | | (7t+1)=(4t+1) | | (7t+1)+(4t+1)=180 | | 3.62×10^3^16=x | | w-5=30 | | 200+2y+4y+4y=360 | | 8+7x=x+22 | | -8b+1=-b-6 | | 2a+1=-a+100 |